Difference between revisions of "Darwinbots3/Physics"

From WikiManual
Jump to: navigation, search
(Multiple collisions)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Basic concepts ==
+
* [[Darwinbots3/Physics/Response | Collision Response]] - Article covers math behind responding to collisions
 
+
* [[Darwinbots3/Physics/Detection | Collision Detection]] - Article covers methods of broad and narrow phase collision detection for simple 2D shapes
=== Forces' linear affects ===
 
Any force acting on a body, at any point on a body, applies the same change in acceleration to the body's center of mass.  Consider the diagram below:
 
__________
 
|        |
 
|        | 
 
|  X    |  <--- <math>\vec{Force_1}</math>
 
|        |
 
|________|  <--- <math>\vec{Force_2}</math>
 
 
''' Diagram 1 '''
 
 
 
Where X is the center of mass for the body.  <math>\vec{Force_1}</math> is exactly centered, so it produces no torque.  The change in acceleration of the body's center of mass is given by <math>\Delta \vec{a} = \frac{\vec{Force_1}}{Mass}</math>.
 
 
 
Let <math>\vec{Force_2}</math> have the same magnitude and direction as <math>\vec{Force_1}</math>.  However it's applying its force at a different point on the body, and will produce torque.  Even though it's off center, the change in acceleration for the body's center of mass is still <math>\Delta \vec{a} = \frac{\vec{Force_1}}{Mass}</math>.
 
 
 
=== Forces' angular affects ===
 
Consider Diagram 1 again.  <math>\vec{Force_1}</math> will not produce any change in angular acceleration for the body, because it is centered.  <math>\vec{Force_2}</math> ''will'' produce change in angular acceleration, because it is off center.  In general, the '''torque''' (<math>\tau</math>) produced by a force is given by:
 
 
 
:<math>\tau = \vec{F} \cdot \vec{r_{\perp}^{P}}</math>
 
 
 
And the change in angular acceleration is given by:
 
 
 
:<math>\Delta \alpha = \frac{\tau}{I}</math>
 
 
 
Where:
 
* <math>\tau</math> is the scalar torque term.
 
* <math>\vec{F}</math> is the vector Force term.
 
* <math>\vec{r_{\perp}^{P}}</math> is the vector perpendicular to the vector from the body's origin to the place <math>\vec{F}</math> is acting on the body.
 
* <math>\alpha</math> is the scalar angular acceleration
 
* <math>I</math> is the body's scalar moment of inertertia.
 
 
 
== Simple collision ==
 
 
 
__________      __
 
|       |    /  |
 
|        | ___/  |
 
|  X    |P___  Y |
 
|        |    \  |
 
|________|    \__|
 
 
 
''' Diagram 2 '''
 
 
 
 
 
Consider a collision between two bodies: body X and body Y.  They collide at point P.  We assume that the collision takes 0 time.  That is, the bodies "instantly" resolve their collision.
 
 
 
The change in angular and linear velocity for body X is given by:
 
 
 
: <math>\Delta\vec{v} = \frac{j_0 \cdot \vec{n}}{m_X}</math>
 
: <math>\Delta\omega = j_0 * \frac{\vec{r_{\perp}^{XP}} \cdot \vec{n}}{I_X}</math>
 
 
 
where:
 
* <math>\Delta\vec{v}</math> is the change in linear velocity.
 
* <math>\Delta\omega</math> is the change in angular velocity.
 
* <math>j_0</math> is the scalar impulse term applied to the body at point P to correct its velocity from the collision.
 
* <math>m_X</math> is the scalar mass for the body.
 
* <math>I_X</math> is the scalar moment of inertia for the body.
 
* <math>n</math> is a vector representing the "normal" to the colision.  In the case of the vertex-on-edge collision in Diagram 2, n would probably be <math><1, 0></math>
 
* <math>\vec{r_{\perp}^{XP}}</math> is the vector perpendicular to the vector from the center of mass of body X to the collision point P.
 
 
 
Body Y likewise, but the changes are opposite in sign (equal and opposite reaction).
 
 
 
We can define a relationship between the velocities before and after the collision using the [http://en.wikipedia.org/wiki/Coefficient_of_restitution coefficient of restitution].  Which is basically a fractional scalar value between 0 (for inelastic collisions) and 1 (for perfectly elastic collisions).
 
 
 
: <math>v_{XPf} - v_{YPf} = -(1 + \epsilon) * (v_{XPi} - v_{YPi})</math>
 
 
 
where:
 
* <math>v_{XPf}, v_{YPf}</math> are the final velocities of bodies X and Y at point P.
 
* <math>\epsilon</math> is the coefficient of restitution for the equation
 
* <math>v_{XPi}, v_{YPi}</math> are the initial velocities of bodies X and Y at point P.
 
 
 
To find the velocity of a body at a given point, use the formula:
 
 
 
: <math>v_P = v + \omega * r^P_\perp</math>
 
 
 
where:
 
* <math>v_P</math> is the velocity at a certain point on the body.
 
* <math>\omega</math> is the body's angular velocity.
 
* <math>r^P_\perp</math> is the vector perpindicular to the vector from the body's center of mass to point P.
 
 
 
Using all of the equations above, we can find <math>j_0</math> by the following algorithm:
 
 
 
  suppose we are supplied with:
 
  a contact point '''P'''
 
  a collision normal '''n'''
 
  two bodies in collision, '''bodyX''' and '''bodyY'''
 
  a coefficient of restitution '''e'''
 
 
Vector VelocityAtPoint(Body body, Vector point)
 
{
 
  return body.Velocity + body.AngularVelocity * (point - body.Position);
 
}
 
 
Scalar ResistanceFromBody(Body body, Vector point, Vector n)
 
{
 
  Vector rPerp = (point - body.Position).Perp();
 
  Scalar a = n.LengthSquared() * body.InverseMass; // The resistance to linear acceleration
 
  Scalar q = Squared(rPerp.DotProduct(n)) * body.InverseMomentOfInertia; // The resistance to angular acceleration
 
 
 
  return a + q;
 
}
 
 
Scalar vXP = VelocityAtPoint(bodyX, P);
 
Scalar vYP = VelocityAtPoint(bodyY, P);
 
 
Scalar b = -(1 + e) * (vXP - vYP).DotProduct(n);
 
 
Vector rXPNorm = (point - bodyX.Position).Perp();
 
Vector rYPNorm = (point - bodyY.Position).Perp();
 
 
Scalar resistanceX = ResistanceFromBody(bodyX, P, n);
 
Scalar resistanceY = -ResistanceFromBody(bodyY, P, n); //equal but opposite
 
 
Scalar j0 = b / (resistanceX - resistanceY);
 
 
return j0;
 
 
 
== Multiple collisions ==
 
Consider the case of collisions between '''N''' bodies simultaneously.  We can expand from the last section to handle N contact points.  The change in linear and angular velocity of a body is described by the equation:
 
 
 
: <math>\Delta\vec{v} = \Large{\frac{\sum_{i=0}^{N-1} j_i \cdot \vec{n}}{m}}</math>
 
 
 
 
 
: <math>\Delta\omega = \Large{\frac{\sum_{i=0}^{N-1} j_i \cdot \vec{r_{\perp}^{Pi}} \cdot \vec{n}}{I}}</math>
 
 
 
where:
 
* <math>j_i</math> is 0 if that contact point isn't part of that body's collision.
 
 
 
We can now form N equations (one for each collision), and solve for N unknowns (each collision impulse <math>j_i</math>).
 
 
 
The equation for collision <math>i</math> is given by:
 
 
 
 
 
: <math>\large{V_{BPi} - V_{APi} = b_i}</math>
 
 
 
 
 
: <math>\large{V_{XPi} = \sum_{k=0}^{k=N-1} (aX_k + qX_k)} \cdot j_k</math>
 
 
 
 
 
: <math>\large{aX_k = \frac{\vec{n_i} \cdot \vec{n_k}}{m_X}}</math>
 
 
 
 
 
: <math>\large{qX_k = \frac{ (\vec{r^{XPi}_\perp} \cdot \vec{n_i}) \cdot (\vec{r^{XPk}_\perp} \cdot \vec{n_k})}{I}}</math>
 
 
 
 
 
: <math>\large{b_i = -(1 + \epsilon) ((V_{BP} - V_{AP}) \cdot n_i)}</math>
 
 
 
 
 
: <math>\large{V_{XP} = V_X + \omega_X \cdot r^{XP}_\perp}</math>
 
 
 
 
 
All terms in the above quantities are known at the beginning of the collision except for <math>j_i</math>.  So we can represent the system of equation as:
 
 
 
 
 
:<math>\large{\mathbf{A} \mathbf{j} = \mathbf{b} }</math>
 
 
 
 
 
For an example, suppose that there are 4 collisions.  One between body A and body B (collision 0), two between body B and body C (collision 1 and 2), and one between body C and body D (collision 3).
 
 
 
 
 
If we take the equation for <math>V_{XPi}</math> above, are replace <math>j_k</math> with commas, we can form the system of equations into a matrix:
 
 
 
: <math> \large{
 
\begin{bmatrix}
 
V_{BP0} - V_{AP0} \\
 
V_{CP1} - V_{BP1} \\
 
V_{CP2} - V_{BP2} \\
 
V_{DP3} - V_{CP3} \\
 
\end{bmatrix} \begin{bmatrix}
 
j_0 \\
 
j_1 \\
 
j_2 \\
 
j_3 \\
 
\end{bmatrix} = \begin{bmatrix}
 
b_0 \\
 
b_1 \\
 
b_2 \\
 
b_3 \\
 
\end{bmatrix} }</math>
 
 
 
 
 
Which can then be solved in <math>O(N^3)</math>.
 

Latest revision as of 05:56, 16 May 2009